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Abstract
Most colloids usually exhibit one or several polydispersities. A natural frame-
work for the theoretical description of polydisperse systems is provided by the
extension of density functional theory to ‘continuous’ mixtures. This will be
illustrated here by the study of both the bulk and interfacial properties of a
simple van der Waals model for a polydisperse colloidal fluid.

1. Introduction

Although at present one often uses systems of colloidal particles as experimental prototypes
for theoretical models of simple fluids [1], in particular for hard-sphere-like fluids, these
systems remain basically complex fluids because the different colloidal particles, while often
very similar, are never strictly identical to one another. In order to understand whether a
particular experimental feature could be the consequence of this polydispersity of the colloidal
particles it is necessary to have at one’s disposal a theoretical framework for the analysis of
polydisperse systems. The theory of polydisperse fluids, leaving aside some early attempts
mainly concerned with polymeric systems [2], can be said to have started two decades ago
with the pioneering works of Kincaid [3], Stell [4] and Glandt [5] and their collaborators, soon
followed by the pioneering work of Hansen and Barrat [6] on polydisperse colloidal crystals.
It seems thus appropriate to dedicate this paper on polydisperse fluid interfaces to Professor
Hansen on the occasion of his 60th birthday.

While most of the early papers were concerned with the influence of this polydispersity
on a given phase (be it a fluid or a solid phase), many of the more recent papers have tackled
various aspects of the study of phase separation in polydisperse fluids [7]. To our knowledge,
however, there has been no prior study of the interface between two coexisting polydisperse
fluids and it is to this topic that we will dedicate the present study (see [8–10] for technical
details).

In section 2 we will generalize the standard density functional theory (DFT) [11] to
polydisperse systems. The bulk phase behaviour of a simple polydisperse van der Waals (vdW)
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description [8, 9] is summarized in section 3. The corresponding interfacial density and
pressure profiles [10] are described in sections 4 and 5, respectively, while the final section 6
contains our conclusions.

2. Density functional theory of polydisperse mixtures

The advantage of DFT over the more traditional statistical mechanical theories [11] results
from the fact that its main focus is directly on the average local number density of the
different species. This allows one to introduce at an early stage some of the most important
structural information about the system to be considered. In a general polydisperse mixture
there will be n = 1, 2, . . . components, each component having a number of attributes, say σ (s)

n ,
s = 1, 2, . . ., which were not strictly fixed during its production process (e.g. its form, size and
charge) but instead were distributed or dispersed over a finite interval (e.g.σmin < σ(s)

n < σmax ).
For simplicity we only consider here the polydisperse generalization of a simple fluid, i.e. a one-
component system of spherical particles with a single polydisperse attribute (e.g. its size). Let
then ρ(r, σ ) dr dσ represent the average number of particles whose centre of mass lies within
a volume dr around r and whose polydisperse attribute σ lies within an interval dσ around
σ . In what follows it will be convenient to represent this attribute by a dimensionless scalar
quantity, σ . We can then associate with the system of average density, ρ(r, σ ), a variational
free energy, A([ρ], [φ]), which is a functional of ρ(r, σ ) (as indicated by the square brackets)
and also of the conjugate external field, φ(r, σ ), which acts on ρ(r, σ ) so as to produce a
system with a given structure. Enlarging now the functional space by this extra σ -dimension,
we can extend the usual DFT into

A([ρ], [φ]) = F[ρ] +
∫

dσ

∫
dr ρ(r, σ ){φ(r, σ ) − µ(σ)} (1)

where F[ρ] is the density functional:

F[ρ] = kB T
∫

dσ

∫
dr ρ(r, σ ){ln(ρ(r, σ )�3(σ )) − 1} + Fex [ρ] (2)

of a system of equilibrium temperature T (kB being Boltzmann’s constant), thermal de Broglie
wavelength �(σ) (which will depend on the attribute σ whenever the kinetic energy does)
and excess free energy Fex [ρ]. The equilibrium value of ρ(r, σ ) will be given then by the
extremum of (1) at fixed φ(r, σ ), i.e. it will be a solution of the following Euler–Lagrange
equation:

µ(σ) = φ(r, σ ) + kB T ln(ρ(r, σ )�3(σ )) +
δFex [ρ]

δρ(r, σ )
(3)

where µ(σ) is the chemical potential of the ‘species’ σ . To close equations (1)–(3) and fully
specify the system, we need moreover an expression for Fex [ρ]. For illustrative purposes we
will consider here (having in mind the liquid–vapour interface of spherical particles) a simple
vdW expression. In this case Fex [ρ] will consist of a local functional describing the excluded-
volume effect due to some hard repulsions and a non-local functional describing the cohesion
effect due to some soft attractions, namely,

Fex [ρ] = −kB T
∫

dr

∫
dσ ρ(r, σ ) ln

{
1 −

∫
dσ v(σ)ρ(r, σ )

}

+ 1
2

∫
dr

∫
dσ

∫
dr′

∫
dσ ′ ρ(r, σ )VA(|r − r′|; σ, σ ′)ρ(r′, σ ′) (4)

where VA(r; σ, σ ′) is the pair potential describing the attractions (A) between two particles
of species σ and σ ′, having respective volumes v(σ ) and v(σ ′). Again, for illustrative
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Figure 1. A schematic representation of the one-phase (n = 1), two-phase (n = 2), three-phase
(n = 3) etc regions in the temperature–density (T –ρ) plane.

purposes one can use simple polynomial expressions [8] in σ and σ ′ for v(σ )/v(1) and
VA(r; σ, σ ′)/VA(r; 1, 1) where σ = 1 denotes the reference species used to make σ

dimensionless. In the appropriate limits, equation (4) reduces to the well-known expressions
used elsewhere for the study of polydisperse bulk phases (namely ρ(r, σ ) → ρ(σ); cf [8])
or monodisperse interfaces (namely ρ(r, σ ) → ρ(r)δ(σ − 1); cf [12]) or monodisperse bulk
phases (namely ρ(r, σ ) → ρδ(σ −1); cf [11, 12]) and we refer the reader to these publications
for some of the technical details.

3. Bulk phase coexistence of polydisperse fluids

An interface is a region spatially separating two coexisting bulk phases. Before considering
the interface itself it is hence indicated that we should summarize here how the bulk phases
are themselves modified by the polydispersity of the system [8]. Let us start from a uniform
‘parent’ phase of density ρ(r, σ ) → ρ(σ) = ρ0(σ ) and temperature T = T0, where ρ0(σ ) is a
given density distribution fixed by the production process of the parent phase and corresponding
to an average density ρ0, with ρ0 = ∫

dσ ρ0(σ ). The quantity h0(σ ) = ρ0(σ )/ρ0 describes
then how the different σ -values are distributed around the reference value σ = 1 (usually
taken to be the average value of σ in this parent phase) and for simplicity we assume h0(σ )

to be singly peaked around σ = 1. Such a single-peaked or monomodal distribution h0(σ )

is appropriate when all the particles are similar (but not identical) and h0(σ ) is then usually
taken to be of a simple (Gaussian, log-normal, Schulz–Zimm) analytical form [8]. Let α be a
measure of the inverse width of h0(σ ) such that the monodisperse system is recovered, namely
h0(σ ) → δ(σ − 1), when α → ∞ [8]. Let us now consider the vdW model of section 2 and
lower T0, at given ρ0 and h0(σ ), until the system phase separates. Because the polydisperse
system can be viewed as a mixture of σ -species with infinitely many components, the Gibbs
phase rule allows for phase separation (or fractionation as it is often called here) into two,
three, . . . phases. Elsewhere [9] we found that the n-phase region is separated from the (n +1)-
phase region by a well-defined temperature, say T (n)

(α) , which decreases with increasing n; that
is, T (1)

(α) > T (2)

(α) > T (3)

(α) > · · · (cf figure 1). Note that when α → ∞ the present vdW model has
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Figure 2. A schematic representation of a sub-critical (ρ0 < ρc , outer curve) and a super-critical
(ρ0 > ρc, inner curve) binodal around the critical binodal (ρ = ρc, central curve) passing through
the critical point (Tc, ρc).

only a one-phase (for T > Tc) region, and a two-phase (for T < Tc) region, so when α → ∞,
all these characteristic temperatures (T (1)

(α) , T (2)

(α) , . . .) will collapse onto T (1)

(∞). Moreover, when
α → ∞ we have T (1)

(∞) = Tc, with Tc being the critical-point temperature, whereas for α �= ∞
we find T (1)

(α) > Tc(α) (the critical point being defined in each case as the point where the two
coexisting phases become identical [8]) with moreover Tc(α) > Tc(∞). The polydispersity
is thus seen to strongly favour phase separation in the system. Let us now lower T0 from the
one-phase (T0 > T (1)(α)) into the two-phase (T (1)(α) > T0 > T (2)(α)) region and compare
this two-phase fractionation with the usual vdW liquid–vapour coexistence (Tc(∞) > T0). If
we label the two phases or fractions as ‘a’ and ‘b’ with, say, the a-phase being the low-density
or ‘vapour’ phase, we find that the coexisting densities, say ρa and ρb, depend now both on
the temperature and on the parent phase density ρ0—that is ρa(T, ρ0) < ρb(T, ρ0)—whereas
when α → ∞, the coexisting densities are independent of ρ0 (only the volume of each phase
will depend on ρ0 via the lever rule). Moreover, each of the coexisting phases or fractions will
have a different σ -distribution, say ha(σ ) and hb(σ ), both of which are different from h0(σ ),
while their form changes with ρ0 for a given T , but also with T for a given ρ0 [8]. Hence,
when ρa(T, ρ0) and ρb(T, ρ0) are plotted in the T –ρ plane, there will be a different binodal for
each ρ0 (cf figures 2 and 3). These binodals are moreover truncated upwards at a characteristic
temperature Tm(ρ0, α), except when ρ0 matches a critical density, ρ0 = ρc(α), in which case
the corresponding binodal resembles the usual (α = ∞) vdW binodal passing through a critical
point Tc(α) (with however Tc(α) > Tc(∞)). When ρ0 is varied at constant α, the whole set of
binodals fills up the space between two limiting curves called the cloud (-point) and shadow
curves (intersecting in the critical point).

The complete solution of a phase separation problem is thus much more labour-intensive
than that of the corresponding monodisperse (α = ∞) system. This has led several authors
to content themselves with computing only the cloud and shadow curves and to introduce
further approximations to the free energy F[ρ]. This however has important drawbacks
for e.g. the study of interfacial properties, which requires a knowledge of the binodals. In
most applications, Fex [ρ] only depends on a finite number of σ -moments of ρ(σ) and this
has led some authors [13] to project F[ρ] a priori onto these moments while annealing the
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Figure 3. A schematic representation of a parent σ -distribution (central curve) phase separating
into a phase enriched in the small-σ species (left curve) and a second phase enriched in the large-σ
species (right curve).

remaining moments. This yields a finite-dimensional moment free energy which is easier to
handle than the full functional F[ρ] but which also approximates the binodals in an unknown
manner. We found it more interesting to project a posteriori the integral equation resulting from
the full F[ρ] onto these moments because this can be done without approximation and leads
to equations which are similar to those of the moment free energy and can hence be solved
with the same amount of labour. The really difficult problem which remains concerns the
question of the global stability of the solutions, i.e. the construction of the convex envelope to
the free-energy functional F[ρ]. As shown elsewhere [9], this is indeed a very labour-intensive
enterprise even for the simple vdW expression used here.

4. Density profiles and adsorption properties

Let us return now to the interface which separates the two bulk phases. To obtain the density
profile across the interface we have to solve now the Euler–Lagrange equation (3) for a two-
dimensional density, ρ(z, σ ), with z being the distance to the planar interface, in such a way
that asymptotically (z → ±∞) the solution matches the bulk phase density distributions. If
ρa(σ ) = ρaha(σ ) and ρb(σ ) = ρbhb(σ ) are the density distributions of the two bulk phases,
which, for a given parent phase of density ρ0 and h0(σ ) of inverse width α, are able to coexist,
for a T belonging to the two-phase region (T (1)(α) > T > T (2)(α)), then the corresponding
boundary conditions for the Euler–Lagrange equation will be ρ(z = ∞, σ ) = ρa(σ ) and
ρ(z = −∞, σ ) = ρb(σ ). An example of such a density profile, ρ(z, σ ), is shown in figure 4.
The information contained in these profiles can be summarized by calculating the adsorption
�1(σ ) of the σ -species at the interface, namely,

�1(σ ) =
∫ ∞

−∞
dz (z1 − z)ρ ′(z, σ ) (5)

where ρ ′(z, σ ) = ∂ρ(z, σ )/∂z and z = z1 is the position of the zero-adsorption Gibbs dividing
surface of the reference species σ = 1 (i.e. z1 is such that �1(σ = 1) = 0). From figure 5 it
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Figure 4. A schematic representation of the density profile of the reference species (σ = 1) across
the interface, and a σ < 1 species which accumulates in the interfacial region.

Figure 5. A schematic representation of the rapid variation of the adsorption �1(σ ) with the
temperature for a temperature close to critical (dotted curve) and a lower temperature (full curve).
Note the excess of the σ < 1 species and the depletion of the σ > 1 species, �1(σ ) being referred
to the reference species σ = 1.

is seen that there is a considerable accumulation at the interface of the σ < 1 species together
with a strong depletion of the σ > 1 species, with an adsorption coefficient �1(σ ) which
rapidly increases when the temperature is lowered. The excess of the σ < 1 species occurs
mainly on the low-density side (z > z1) of the interface, while the depletion of the σ > 1
species is concentrated on its high-density side (z < z1).

5. Pressure profiles and surface tension

Although the pressure is constant in the coexisting bulk phases, there is a pressure deficit
in the interfacial region which gives rise there to the interfacial or surface tension [14]. In
order to compute this local pressure profile, namely p(z), we divide the two-phase system
into two parts separated by a plane perpendicular to the constant-density surfaces. Next we
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Figure 6. A schematic representation of the pressure profile p(z) across the interface for a
temperature close to critical (upper curve) and a lower temperature (lower curve). Note the large
pressure deficit on the high-density side and the smaller pressure excess on the low-density side
of the interface. The top and bottom z0 indicate respectively the location of the surface of tension
corresponding to the two pressure curves.

infinitesimally deform one part tangentially to the constant-density surfaces and identify the
resulting thermodynamic work of deformation with the work of deformation of the pressure
forces acting in, and in a direction normal to, the plane separating the two parts [12]. The result
is a pressure profile, p(z), which reduces to the constant pressure of the two bulk phases in
each bulk phase and which exhibits a profile (namely p′(z) �= 0) in the interfacial region. This
profile consists of a large pressure deficit on the high-density side of the interface followed by
a smaller pressure excess on the low-density side just as in the monodisperse (α = ∞) case,
except that here (α < ∞) the interfacial region (p′(z) �= 0) is considerably broadened by the
polydispersity of the system (cf figure 6). To this pressure profile we can associate a surface
tension γ , namely,

γ =
∫ ∞

−∞
dz (p − p(z)) ≡

∫ ∞

−∞
dz zp′(z), (6)

where p = p(z = ±∞) is the bulk pressure, as well as a surface of tension, z = z0:

z0 = 1

2γ

∫ ∞

−∞
dz z2 p′(z) (7)

with p′(z) = d p(z)/dz. We find that z = z0 lies on the high-density side (z0 < z1)
of the Gibbs dividing surface, z = z1, of the reference species and that γ vanishes with
a classical critical exponent when T approaches Tc(α), as expected for a mean-field vdW
theory. More interestingly, we find that γ (α) < γ (α = ∞) for the low T -values, whereas
γ (α) > γ (α = ∞) when T approaches Tc(α), mainly because Tc(α) > Tc(∞) (cf figure 7).
Both effects are due to the polydispersity, but the influence of the latter is seen here to have a
non-monotonic T -dependence.

6. Conclusions

We have shown how DFT, suitably generalized to polydisperse systems, can be used for the
study of the interfacial properties of fluid–fluid interfaces of polydisperse systems. The results
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γ

Figure 7. The schematic variation of the surface tension γ with the temperature T for the
monodisperse (dashed curve) and the polydisperse (full curve) systems of respective critical
temperatures Tc(∞) and Tc(α).

indicate some interesting differences between the phase behaviour of a polydisperse system
and its monodisperse limit studied within the same framework. These results have been
obtained from a model free energy but are thought to be fairly robust within the area of the
vdW description. Some of the questions analysed here will however be difficult to study by
means of computer simulations because the simulation of interfaces requires large systems, the
more so when the system is polydisperse. Last but not least, experimental studies will require
a careful characterization of the polydispersity of the underlying interaction potential before
its results can be analysed within a theoretical framework similar to the one presented here.
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